INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 134 SF/22

page (pages)

Date: 17 of June 2022

1 (3)

Determination of installed thermal resistance into a roof and into a wall of PRO WALL according to EN ISO 6946:2017

(test name)

Determination of installed thermal resistance into a roof and into a wall of PRO Test method:

WALL according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name: PRO WALL

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

(name and address of enterprise)

SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France Manufacturer:

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Pitched roof ($\alpha = 0^{\circ}$)		3.96
Pitched roof ($\alpha = 30^{\circ}$)	EN ISO 6946:2017	4.02
Pitched roof ($\alpha = 45^{\circ}$)		4.06
Wall ($\alpha = 90^{\circ}$)		4.21

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

made by: University of Technology

(Name of the organization)

Multilayer reflective insulation product PRO WALL (110 mm) (test report no. Products used

129 SF/22 U) in calculation:

Declared thickness of product PRO WALL - 80±10 mm

Additional information:

Application, 2022-06-09

tuvos Resp

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

K. Banionis

(approves the test results)

(n., surname)

Calculated by

A. Stonkuvienė (n., surname)

signature)

(signature

(calculation made by)

OKUMENTAL S.P.

Validity - the named data and results refer exclusively to the tested and described specimens. Notes on publication - no part of Give without may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m²·K)/W	
PRO WALL (test report No. 129 SF/22 U)	$R_{core90/90} = 3.25$	
"Rcore90/90" is the declared R core value following "Rcore90/90" is calculated on 4 results of 4 samples		
EN 16012 + A1 (and using the fractile 90/90 calcula	tion rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}}$;).	

Temperature regime 20°C / 0°C		
1.	Unventilated Air cavity #1, 20 mm	
2.	PRO WALL, 110 mm	
3.	Unventilated Air cavity #2, 20 mm	

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope α = 0° (EN ISO 6946)

PRO WALL installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4380	m²·K/W
	PRO WALL	3.25	m²·K/W
	Unventilated Air cavity # 2	0.2684	m ² ·K/W
	R Total	3.96	m²·K/W

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

PRO WALL installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4879	m²·K/W
	PRO WALL	3.25	m²·K/W
	Unventilated Air cavity # 2	0.2863	m ² ·K/W
	R Total	4.02	m²·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

PRO WALL installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5173	m²·K/W
	PRO WALL	3.25	m²·K/W
	Unventilated Air cavity # 2	0.2962	m²·K/W
	R Total	4.06	m²·K/W

Table 5: Wall construction calculation results for slope α = 90° (EN ISO 6946)

PRO WALL installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.6317	m²·K/W
	PRO WALL	3.25	m²·K/W
	Unventilated Air cavity # 2	0.3304	m²·K/W
	R Total	4.21	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 30° to 90°).
- Calculations of R values are valid when PRO WALL is installed from the internal side of the Roof or the external part of the Roof.
- Calculations of R values are valid when PRO WALL is installed in agreement with the installation guidelines described into the manufacturer brochure.